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Abstract

The ghost fluid method for the poor (GFMP) is an elegant, computationally efficient, and nearly conservative method
for the solution of two-phase flow problems. It was developed in one dimension for the stiffened gas equation of state
(EOS) and one-step time-discretization algorithms. It naturally extends to three dimensions but its extension to higher-
order, multi-step time-discretization schemes is not straightforward. Furthermore, the original GFMP and many other
ghost fluid methods fail to handle the large density and pressure jumps that are encountered in underwater implosions.
Therefore, the GFMP is generalized in this work to an arbitrary EOS and multi-fluid problems with multiple EOSs. It
is also extended to three dimensions and developed for higher-order, multi-step time-discretization algorithms. Further-
more, this method is equipped with an exact two-phase Riemann solver for computing the fluxes across the material inter-
face without crossing it. This aspect of the computation is a departure from the standard approach for computing fluxes in
ghost fluid methods. It addresses the stiff nature of the two-phase air/water problem and enables a better handling of the
large discontinuity of the density at the air/water interface. As the original GFMP, the proposed method is contact pre-
serving, computationally efficient, and nearly conservative. Its superior performance in the presence of large density and
pressure jumps is demonstrated for shock-tube problems. Its practicality and accuracy are also highlighted with the three-
dimensional simulation of the implosion of an air-filled and submerged glass sphere.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of compressible multi-medium flows arises in many applications including under-
water bubble dynamics, shock wave interactions with material discontinuities, and combustion, to name only
a few. The motivation for the present work is the accurate and computationally efficient prediction of the
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bubble dynamics and pressure signatures generated by underwater implosions. The large size of the bubbles
and their energy content result in strong shock and expansion waves. Typically, these propagate through air
(vapor) and water and can be reflected or refracted off the air/water interface, which calls for modeling water
as a compressible fluid. The ratio of water and air densities (�1000) is such that the air/water interface is well
approximated by a free surface where the gas can only apply a pressure on the liquid.

Underwater implosions result in bubbles whose characteristic size is considerably larger than that of bub-
bles obtained in liquid suspensions. Hence, such bubbles are less affected by surface tension and viscous forces
and therefore their dynamics can be modeled by the Euler equations. The numerical solution of these equa-
tions for a single fluid has reached a state of considerable maturity. Godunov-type schemes [1] and extensions
to higher-order semi-discretizations [2,3] are often the methods of choice for achieving crisp shock resolution
in space. A variety of explicit and implicit temporal discretizations have been developed for these schemes and
for both steady and unsteady problems. However, initial attempts [4,5] at the extension of these numerical
algorithms to multi-fluid problems suffered from numerical instabilities and oscillations, primarily around
the material interface.

The common multi-fluid solution methods published in the literature use either a Lagrangian or an Eule-
rian method. In a Lagrangian method, the computational mesh moves and distorts with the material interface.
The interface itself is convected with the local fluid velocity and can be resolved sharply by controlling the
numerical diffusion around it. However, if the problem induces large displacements of the interface, the result-
ing mesh distortions can adversely affect the accuracy and stability of the numerical solution process and often
make the Lagrangian approach unpractical.

Eulerian methods use a fixed mesh and usually carry an auxiliary equation for tracking or capturing the
material interface. In the volume of fluid (VOF) approach [6], each computational cell is assumed to possibly
contain a mixture of both fluids and the volume occupied by each fluid is represented by the volume fraction.
The evolution of this fraction is governed by a transport equation where the speed of propagation is deter-
mined by the local fluid velocity. The VOF method has been predominantly used for incompressible flows
where the knowledge of the interface position is sufficient to recover the density field. For compressible flows,
recovering the density field and the internal energies in a cell containing both fluids does not seem to be an
obvious task. Another class of Eulerian methods that has found wide-spread usage is based on the level-set
equation [7] for capturing the interface. This equation falls under the general class of Hamilton–Jacobi equa-
tions. It can also be viewed as a particular case of the transport equation. It governs the evolution of the zero
of the level-set function which marks the interface. The level-set equation naturally allows for merger and
break-up of the interface, is relatively straightforward to implement, does not incur a significant computa-
tional overhead and therefore is an attractive candidate approach for interface capturing. In addition to
the volume (or mass) fraction model and the level-set approach, a c model – where c denotes the ratio of spe-
cific heats for a given gas – has also been suggested for capturing the evolution of the interface [8]. Here again,
the evolution equation is a transport equation. In principle, any function of c can be used as the interface mar-
ker, but the ratio 1=ðc� 1Þ has been shown to favor a non-oscillatory numerical solution of the pressure at the
material interface [5,9,8,10].

Whether in the context of a Lagrangian or Eulerian approach, the numerical treatment of the Euler equa-
tions at the material interface still needs to be addressed. Early attempts at the numerical solution of multi-
medium flows in an Eulerian setting resulted either in mass fractions outside the valid range of ½0; 1�, or in
pressure oscillations across the material interface. These oscillations are present even in first-order, monoto-
nicity preserving schemes. To suppress them, particular forms of the discretization of the conserved variables
and/or particular functions for capturing the evolution of the interface have been proposed [8].

Amid attempts to prevent pressure-oscillations in multi-fluid calculations, the ghost fluid method (GFM)
was developed as a more economical alternative solution method [7]. The main feature of this method is its
simplicity: it allows multi-fluid computations to be performed in the vicinity of the material interface as if they
pertained to a single medium domain. Given an interface capturing technique – usually, the level-set method –
the GFM exploits the concept of ghost and real fluid cells and manages them with an overlapping Schwarz-
like numerical procedure. In the material interface region, it sets the values of the pressure and normal velocity
in the ghost fluid cells to those in the real fluid cells. To eliminate an otherwise spurious ‘‘over-heating” phe-
nomenon, it computes the density of the ghost fluid using an isobaric technique [11]. In its basic form, the
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GFM is non conservative [12]. However, it can be equipped with an a posteriori correction procedure that first
measures the discrete conservation errors generated in the neighborhood of the material interface during a
given time-step, then offsets them using an error redistribution technique. This correction procedure was pro-
posed in [13] where it was applied to stiff detonation problems. Unfortunately, the GFM fails to solve some
air/water problems of interest. For such problems, it either delivers inaccurate results because of spurious
oscillations, or simply fails to deliver any result [14]. An improved version of this method incorporating in
a one-step time-integration scheme an approximate two-phase Riemann solver at the material interface that
assumes either a two-shock or two-rarefaction wave structure was proposed in [14] for the solution of gas/
water problems and illustrated with simple 1D and 2D calculations. Like the original GFM, this enhanced
version relies on the isobaric technique for eliminating the spurious over-heating phenomenon. For two-
and three-dimensional applications, this isobaric fix requires the solution of yet another auxiliary partial dif-
ferential equation (PDE) [7] and therefore increases further the computational complexity of the method.
Most recently, the approximate Riemann solver of [14] was replaced in [17] by an exact version to eliminate
the need for the isobaric fix.

The ‘‘overlapping” aspect of the GFM induces a combined storage and computational overhead that is
application dependent. The ghost fluid method for the poor (GFMP) [15] is a variant method which
avoids most of this overhead by computing two numerical fluxes at the material interface: one using
the thermodynamic parameters of the fluid on one side of the interface, and another one using the ther-
modynamic parameters of the other fluid medium. It is an elegant, computationally efficient, and nearly
conservative method in the sense that it conserves all conservative variables except the energy across
the material interface. The GFMP was developed in [15] for one-dimensional problems using a one-step
explicit time-integration algorithm and assuming that each given fluid is a stiffened gas. It involves a subtle
but crucial conversion from conservative to primitive variables (and vice-versa) before and after advancing
in time the solution of the level-set equation. Its extension to multiple dimensions is straightforward. How-
ever, as it will be shown in this paper, its extension to higher-order multi-step time-integrators requires a
careful sequencing of its computational steps. More importantly, the GFMP does not apply as formulated
in [15] to multi-fluid problems involving either an equation of state (EOS) that is different from that of a
stiffened gas, or different EOSs on the two sides of a material interface. Hence, applying the GFMP to air/
water problems calls for either modeling both fluid media as stiffened gases, or generalizing this method to
a larger number of EOSs and extending it to multi-fluid problems with multiple EOSs. However, even
when both water and air are modeled as stiffened gases, it is the authors’ experience that the GFMP, like
the GFM, fails to solve most air/water problems of interest. It is the authors’ opinion that these and other
related observations that were also documented in [14] can be explained by the fact that inherent to the
GFM and GFMP is a flux computation approach that crosses the material interface. Using data from
both sides of a discontinuity in a spatial discretization scheme leads to a computational method that is
usually not robust in the presence of a large jump such as that encountered for the density at an air/water
interface.

When an underwater explosion occurs, the resulting energy release creates an expanding gas bubble which
undergoes a multiple expansion (explosion)/collapse (implosion) process and continuously loses energy until it
breaks down. The bubble oscillation process, the initiation process, the source of the instability leading to bub-
ble collapse, and the energy loss mechanism are not completely understood. Extensive experimental [18] and
computational [19] investigations have been conducted to develop a better understanding of these phenomena.
Early computational studies were reported in [19] using a simplified, one-dimensional computational model in
which water was modeled as a compressible fluid and the bubble was assumed to maintain a spherical shape.
The gas inside the bubble was assumed to have a polytropic EOS and to undergo isentropic changes [19].
Excellent correlation with experimental data was obtained for the bubble’s radius time-history. In [20], the
simplified model developed in [19] was modified to account for energy losses in the gas medium. The resulting
computational model produced better correlations with experimental data for the amplitude and phase of the
bubble oscillations [20]. However, because they assume spherical symmetry, both models developed in [19] and
[20] cannot properly account for bubble migration due to buoyancy. Furthermore, they cannot account for
shape changes during the collapse phase when the bubble motion is unstable. Three-dimensional simulations
are required for capturing these important details.
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Given the context set above, the main objectives of this paper are three-fold: (a) to generalize the GFMP to
multi-fluid problems with multiple EOSs and to extend it to higher-order time-discretizations, (b) to enable its
application to air/water problems by enhancing its robustness for two-phase problems with large contact dis-
continuities and strong pressure jumps at the material interface, and (c) to demonstrate its potential for the
three-dimensional simulation of underwater implosions. To this effect, the remainder of this paper is organized
as follows.

In Section 2, the governing equations of the two-phase air/water problems of interest are presented and
discussed. In Section 3, the GFMP is briefly overviewed. In Section 4, the GFMP is generalized to multi-fluid
problems with multiple EOSs. Its robustness with respect to a large discontinuity of the density and a strong
pressure jump at the material interface is enhanced in Section 5 via the incorporation of an exact, local, one-
dimensional, two-phase Riemann solver for computing the interfacial fluxes without traversing the zone of
discontinuity. The resulting multi-fluid method is referred to as the GFMP–ERS (for GFMP with Exact Rie-
mann Solver). In Section 6, a computational framework for extending the GFMP–ERS to higher-order multi-
step time-discretization algorithms is proposed. In Section 7, the higher-order GFMP–ERS is evaluated using
simple benchmark problems, some of which include representative features of underwater implosions. Then,
the potential of the GFMP–ERS is illustrated with the three-dimensional simulation of the implosion of an
air-filled and submerged glass sphere, and the favorable comparison of the obtained numerical results to
experimental as well as other numerical data. Finally, Section 8 concludes this paper.

2. Governing equations

2.1. Eulerian flow

As already mentioned, underwater implosions generate bubbles that are usually considerably larger than
those encountered in liquid suspensions. Hence, such bubbles are less affected by surface tension and viscous
effects. For this reason, their dynamics is modeled in this paper by the Euler equations written in the familiar
conservation form
ow
ot
þr � FðwÞ ¼ 0; ð1Þ
where t, wðX ; tÞ, X ¼ ðx; y; zÞ, and F denote time, the conservative fluid state vector, space, and the convective
flux vector, respectively. The initial condition for the above PDE is written as:
wðX ; 0Þ ¼ gðX Þ ð2Þ

and its boundary conditions are not specified here as they are problem dependent.

2.2. Equations of state

Two different EOSs are considered in this paper for modeling compressible water: (1) the stiffened gas equa-
tion, and (2) Tait’s equation.

2.2.1. The stiffened gas equation

The stiffened gas equation is a generalization of the perfect gas EOS. It can be written as
ðc� 1Þqe ¼ p þ cp; ð3Þ

where q, e, and p denote the density, internal energy per unit mass and pressure, respectively, and c and p are
constants that need to be specified. This EOS is versatile: it has been used for modeling gas, liquid, and solid
media. The constants c and p are set so that the speed of sound in the medium of interest, c, is correctly pre-
dicted using this EOS and the definition
c ¼
ffiffiffiffiffiffiffiffiffi
op
oq

����
s

s
; ð4Þ
where s denotes the entropy.
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To evaluate the sound speed c, the following thermodynamic equations are first recalled
e ¼ cvT T ds ¼ deþ p d
1

q

� �
; ð5Þ
where cv denotes the specific heat at constant volume. From Eqs. (3) and (5) it follows that
T ds ¼ deþ pd
1

q

� �
¼ p þ cp
ðc� 1Þqcv

� �
ds ð6Þ

¼ 1

ðc� 1Þq

� �
dp � p þ cp

ðc� 1Þq2

� �
dq� p

q2

� �
dq ð7Þ

¼ 1

ðc� 1Þq

� �
dp � cðp þ pÞ

ðc� 1Þq2

� �
dq: ð8Þ
Hence
ds ¼ cv

p þ cp

� �
dp � ccvðp þ pÞ

ðp þ cpÞq

� �
dq ð9Þ
and the speed of sound in a stiffened gas is given by
c ¼
ffiffiffiffiffiffiffiffiffi
op
oq

����
s

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðpþ pÞ

q

s
: ð10Þ
For water, the following numerical values of p and c are often found in the literature
p ¼ 6:0� 108 Pa c 2 f4:4; 5:5; 7:0g: ð11Þ
Remark 1. For p ¼ 0, Eq. (3) simplifies to the perfect gas equation.
2.2.2. Tait’s equation

The Tait equation of state models a liquid such as water as a compressible, barotropic liquid whose bulk
modulus is an affine function of pressure. Hence, this EOS involves only the density and pressure variables.
However, it is a highly non-linear equation of the form
p ¼ gþ aqb; ð12Þ

where g, a, and b are three constants that can be determined from the assumption that the bulk modulus K of
the liquid is an affine function of pressure determined by two constants k1 and k2 and from the knowledge of a
reference state ðq0; p0Þ. Hence
k1 þ k2p ¼ K ¼ q
dp
dq
¼ baqb ¼ bðp � gÞ; ð13Þ
which gives
g ¼ � k1

k2

b ¼ k2: ð14Þ
Furthermore, writing p0 ¼ pðq0Þ gives
a ¼
p0 þ k1

k2

qk2
0

: ð15Þ
In the literature, the following numerical values are often found for water
k1 ¼ 2:07� 109 kg�m�3 � s�2 k2 ¼ 7:15: ð16Þ
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When water is modeled by Tait’s EOS, the speed of sound in this fluid is given by
c ¼

ffiffiffiffiffiffi
dp
dq

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abqb�1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p0 þ k1

q0

� �
q
q0

� �k2�1
s

: ð17Þ
For q0 ¼ 1000 kg�m�3 and p0 ¼ 106 Pa, the predicted speed of sound is
c0 ¼ cðq0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p0 þ k1

q0

s
¼ 1441:23 m� s�1 ð18Þ
as expected.

Remark 2. When a fluid is modeled by Tait’s EOS, the energy equation becomes decoupled from the
continuity and momentum equations.

Remark 3. Consider a stiffened gas that is undergoing an isentropic transformation. Let T, s, and h denote
temperature, entropy and enthalpy, respectively. From the second principle of thermodynamics it follows
that

dp 1
� �
0 ¼ T ds ¼ dh�
q
¼ deþ p d

q
: ð19Þ
From the stiffened gas Eq. (3) and its differentiation it follows that
de ¼ 1

ðc� 1Þq

� �
dp � p þ cp

ðc� 1Þq2

� �
dq: ð20Þ
Substituting Eq. (20) into Eq. (19) yields after expansion
0 ¼ 1

ðc� 1Þq

� �
dp � p þ cp

ðc� 1Þq2

� �
dq� p

q2

� �
dq ¼ 1

p þ p

� �
dp � c

q

� �
dq: ð21Þ
From the integration of the above result, it follows that
9k3 2 R=p ¼ k3q
c � p; ð22Þ
which shows that Tait’s EOS (12) corresponds to the particular case of an isentropic stiffened gas EOS with
c ¼ b ¼ k2, p ¼ �g ¼ k1

k2
and k3 ¼ a ¼ ðp0 þ k1=k2Þ=qk2

0 .

2.3. Conservative level-set approach

In this work, the level-set method [21] is adopted for capturing the material interface. More specifically, the
level-set equation is written in conservation form as follows:
oðq/Þ
ot
þr � ðqu/Þ ¼ 0; ð23Þ
where q and u are the density and velocity vector of the fluid, respectively, and / is a function initialized to the
distance between each grid point and the material interface. Hence, / ¼ 0 captures the interface. To ensure
that the signed distance function property of / is preserved during the computations, / can be periodically
re-initialized using the algorithm proposed in [28].

2.4. Semi-discretization

The finite volume (FV) method is chosen here to semi-discretize all PDEs introduced above. Given a Com-
putational Fluid Dynamics (CFD) grid, this method transforms the Euler flow equations into
ow
ot
þ
Z

Ci

r � F ðwÞdV ¼ 0; ð24Þ
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where Ci is the volume of the cell or control volume surrounding the ith grid point. Throughout this paper,
the control volumes are assumed to be constructed by connecting the centroids of the triangular faces of
the tetrahedra and the midpoints of the edges (Fig. 1). The resulting grid is referred to as the ‘‘dual” CFD
grid.

Using integration by parts, the volume integral in Eq. (24) is converted to a surface integral across the
boundary of the control volume and approximated by
Fig. 1.
the gra
F iðW Þ ¼
X
j2jðiÞ

mesðoCijÞUijðW i;W j; nijÞ; ð25Þ
where jðiÞ is the set of vertices connected by an edge to vertex i, oCij is the segment of the boundary of Ci that
intersects edge i� j, mesðoCijÞ is its measure, Uij denotes the numerical flux function across oCij, W i denotes
the discrete fluid state vector at vertex i and nij is the unitary outer normal to oCij.

To achieve second-order spatial accuracy and address in this case potential numerical oscillations, the FV
scheme is equipped with the MUSCL (Monotonic Upwinding Scheme for Conservation Laws) interpolation
procedure [2] and a slope limiter. In this case, the approximation (25) is replaced by
F iðW Þ ¼
X
j2jðiÞ

mesðoCijÞUijðW ij;W ji; nijÞ; ð26Þ
where W ij and W ji are two extrapolated and limited fluid state vectors. Note that for the MUSCL interpola-
tion procedure, the computation of the gradients at a node is based on the state values of its neighbours that
lie on the same side of the material interface, but not on the state values of its neighbours that lie in another
fluid.

3. The ghost fluid method for the poor

The GFMP proposed in [15] is a computationally lighter alternative to the original GFM. It trades
most of the redundant storage and computational requirements of the GFM in the vicinity of the material
interface with the evaluation of two numerical fluxes: one using the thermodynamic parameters of the
fluid on one side of the interface, and another one using the thermodynamic parameters of that on the
other side.

When the level-set method is chosen for capturing the material interface between two fluids modeled by the
stiffened gas EOS, Roe’s solver [22] is chosen for computing the numerical flux functions in Eq. (25) and time-
variation is discretized by the forward Euler scheme using a constant time-step Dt, the key computational steps
Control volume (lighter lines) in an unstructured tetrahedral (heavier lines) mesh (only one of the tetrahedra needed to construct
phically depicted control volume is shown).
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of the GFMP between time tn ¼ nDt and time tnþ1 ¼ ðnþ 1ÞDt can be summarized as follows using the nota-
tion adopted in this paper:

(1) Capture the material interface by checking the product of the values of the level-set function / at vertices
i and j of edge i� j. A positive value indicates that edge i� j does not cross the material interface, in
which case the numerical flux function is computed as usual. On the other hand, a negative value indi-
cates that this edge crosses the material interface. In this case, compute two different fluxes: one using the
coefficients c and p of the stiffened gas where node i lies and one using those of the stiffened gas where
node j lies. In algorithmic words, this can be written as follows:
If /n
i � /n

j > 0; Uij ¼ Roe W n
i ;W

n
j ; ðci ¼ cj; pi ¼ pjÞ; nij

� �
;

If /n
i � /n

j 6 0; then ð27Þ
Uij ¼ RoeðW n

i ;W
n
j ; ci; pi; nijÞ;

Uji ¼ RoeðW n
j ;W

n
i ; cj; pj; njiÞ;
where nji ¼ �nij, ci and pi denote the c and p coefficients of the stiffened gas where node i lies, respec-
tively, and cj and pj denote the c and p coefficients of the stiffened gas where node j lies, respectively.

(2) Time-advance the solution of the multi-fluid problem to compute a temporary value eW nþ1
i of W nþ1

i
eW nþ1
i ¼ W n

i � Dt
X
j2jðiÞ

mesðoCijÞUijðW n
i ;W

n
j ; nijÞ: ð28Þ
(3) Using the value of the level-set function at time tn, /n, unpack the conservative fluid state vector eW nþ1 –
that is, convert it to a vector V nþ1 of primitive variables to obtain ~qnþ1 and ~unþ1
eW nþ1!/
n

V nþ1 ! ð~qnþ1; ~unþ1Þ: ð29Þ

(4) Compute /nþ1 by time-advancing the solution of the level-set Eq. (23) using the forward Euler scheme

and the values of ~qnþ1 and ~unþ1 stored in V nþ1
ð/n; ~qnþ1; ~unþ1Þ ! /nþ1: ð30Þ

(5) Using the updated value of the level-set function /nþ1, pack V nþ1 – that is, transform it into the conser-

vative fluid state vector W nþ1
V nþ1 !/
nþ1

W nþ1: ð31Þ

The GFMP summarized above was proposed in [15] in one-dimensional form using a one-step explicit
time-integration scheme. While it has been used mostly with Roe’s flux [22], it is equally applicable with
any flux that preserves a contact discontinuity – that is, preserves a uniform pressure and uniform density
input. Its generalization to multiple dimensions is straightforward (for example, Eq. (28) is already written
in multiple dimensions). Its generalization to a non stiffened gas EOS and its formulation for multi-fluid
problems with different EOSs on both sides of a material interface are also relatively simple. However, its
extension to higher-order, multi-step, time-integration schemes is more subtle as it requires a careful
sequencing of the computational steps outlined above. These issues are discussed in Sections 4 and 5,
respectively.
4. Generalization to an arbitrary EOS and multi-fluid problems with multiple EOSs

4.1. Generalization to an arbitrary EOS

The original GFMP is generalized here to an arbitrary EOS characterized by nq parameters qk,
k ¼ 1; . . . ; nq, by replacing Step (1) and Eq. (28) of the algorithm described in Section 3 by



7682 C. Farhat et al. / Journal of Computational Physics 227 (2008) 7674–7700
If /n
i � /n

j > 0; Uij ¼ Roe W n
i ;W

n
j ; ðqki

¼ qkj
; k ¼ 1; . . . ; nqÞ; nij

� �
;

If /n
i � /n

j 6 0; then ð32Þ

Uij ¼ Roe W n
i ;W

n
j ; ðqki

; k ¼ 1; . . . ; nqÞ; nij

� �
;

Uji ¼ Roe W n
j ;W

n
i ; ðqkj

; k ¼ 1; . . . ; nqÞ; nji

� �
;

where qki
and qkj

denote the values of the parameters of the given EOS for the fluids where node i and node j

lie, respectively. This generalization assumes that Roe’s solver [22] can be extended to the EOS of interest. This
is true, for example, for Tait’s equation described in Section 2.2.2.

4.2. Generalization to multi-fluid problems with multiple EOSs

In order to address multi-medium flow problems with multiple EOSs – and more specifically, the case where
the two fluids on the left and right sides of a material interface are governed by different EOSs – the GFMP
method is generalized here by replacing Step (1) and Eq. (28) of the original GFMP by
If /n
i � /n

j > 0; Uij ¼ Roe W n
i ;W

n
j ; ðEOSi ¼ EOSjÞ; nij

� �
;

If /n
i � /n

j 6 0; then ð33Þ
Uij ¼ RoeðW n

i ;W
n
j ;EOSi; nijÞ;

Uji ¼ RoeðW n
j ;W

n
i ;EOSj; njiÞ;
where EOSi and EOSj denote the EOS governing the fluids where node i and node j lie, respectively.
The reader can observe that Eq. (34) include Eq. (33) as a particular case. Therefore, Eq. (34) are adopted

to describe the GFMP in the general case of multi-fluid problems with arbitrary and/or multiple EOSs.

5. The ghost fluid method for the poor with an exact two-phase Riemann solver

A large number of numerical experiments performed by the authors have revealed that the GFM and the
GFMP are not capable of solving some air/water flow problems, particularly at practical mesh resolutions.
More specifically, the authors have found that for this class of two-phase flow applications, the GFMP tends
to predict inexact pressures and densities, most of which are negative on the water side of the material inter-
face. The use of a positive flux such as the Lax–Friedrichs flux instead of the Roe flux was not found to
overcome this problem (for example, see Section 7.1.3). The authors believe that the main reason why
the GFM and GFMP fail to perform in the presence of a strong discontinuity at a material interface as
in the case of an air/water interface where qwater=qair ¼ 1000, is that both methods utilize data from both
sides of this discontinuity when computing the interfacial fluxes (for example, see Section 3, Step (1), Eq.
(28)). In other words, both of the GFM and GFMP utilize data from both sides of the discontinuity when
discretizing the spatial terms of the governing equations in the vicinity of the material interface. Usually, this
is not an effective approach, particularly for strong discontinuities and relatively low-order spatial
discretizations.

Here, it is proposed to address the robustness issue outlined above by modifying the interfacial flux com-
putation performed in Step (1) of the generalized GFMP described in Section 4 to use a new fluid state vector
W Rn

i that is on the same side of the material interface as W i and a new fluid state vector W Rn

j that is on the same
side of the material interface as W j, as follows:
If /n
i � /n

j > 0; Uij ¼ Roe W n
i ;W

n
j ; ðEOSi ¼ EOSjÞ; nij

� �
;

If /n
i � /n

j 6 0; then

Uij ¼ RoeðW n
i ;W

Rn

i ;EOSi; nijÞ;
Uji ¼ RoeðW n

j ;W
Rn

j ;EOSj; njiÞ:

ð34Þ
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In Eq. (34) and throughout the remainder of this paper, W Rn

i and W Rn

j denote the conservative fluid state vec-
tors associated with the exact solution at the interface from the sides where node i and node j lie, respectively,
of the following one-dimensional two-phase Riemann problem
Fig. 2.
the ma
nodes
ow
ot
þ oF

on
ðwÞ ¼ 0;

wðn; 0Þ ¼
W n

i if n 6 0;

W n
j if n > 0;

( ð35Þ
where n is the abscissa along the edge i� j that crosses the interface and n ¼ 0 at this initial interface (see
Fig. 2).

It is noted that while the formulation of problem (35) contains data from both sides of the material inter-
face, the solution of this problem does not involve any spatial discretization since it is carried out analytically.
Hence, unlike in the original GFM and GFMP, the computation of the interfacial fluxes proposed in Eq. (34)
does not cross the material interface.

The generalized GFMP described in Section 4 and equipped as proposed above with an exact, local, one-
dimensional, two-phase Riemann solver for the computation of the interfacial fluxes is referred to in the
remainder of this paper as the GFMP–ERS (for GFMP with Exact Riemann Solver). To keep this paper
as self-contained as possible, the important aspects of the exact solution of the Riemann problem (35) are
described in Appendix A of this paper for both cases of the stiffened gas EOS and Tait’s EOS.

Next, a rationale for the proposed interfacial flux computation (34) is presented. Then, some important
implementational details are described before the proposed GFMP–ERS is described in details. Finally, the
aforementioned implementational details are justified by proving an important mathematical property of
the new GFMP–ERS.

5.1. Rationale

Let EOSi (EOSj) denote the equation of state on the left (right) side of a material interface where node i (j)
lies. The rationale for the proposed flux computation described in Eq. (34) is provided by the structure of the
solution of the two-phase Riemann problem (35). This solution is composed of four constant states W i, W R

i ,
W R

j and W j separated by non-linear waves and a contact discontinuity.
Illustration of the local, one-dimensional, two-phase Riemann problem on a two-dimensional grid. (Subscripts I, L, and R denote
terial interface and the media at its left and right sides, respectively. nij denotes the normal to the control volume at the face between
i and j. mij denotes the normal to the material interface at the same point).
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Consider first the following one-phase Riemann problem associated with a fluid whose EOS is EOSi
ow
ot
þ oF

on
ðwÞ ¼ 0

wðn; 0Þ ¼
W n

i if n 6 0

W R
i if n > 0

� ð36Þ
and then the similar one-phase Riemann problem associated with a fluid whose EOS is EOSj
ow
ot
þ oF

on
ðwÞ ¼ 0;

wðn; 0Þ ¼
W R

j if n 6 0;

W n
j if n > 0:

( ð37Þ
The solution of problem (36) is composed of two constant states, W n
i and W R

i , and a single non-linear wave
connecting them. The restriction to n < ncontact of this solution, where ncontact denotes the coordinate of the con-
tact discontinuity (which has zero strength in this case), is identical to the restriction to n < ncontact of the solu-
tion of the original two-phase Riemann problem (35). Similarly, the restriction to n > ncontact of the solution of
problem (37) is identical to the restriction to n > ncontact of the solution of the original two-phase Riemann
problem (35). These two results hold for any EOSi, EOSj, W i, and W j. Therefore, utilizing W R

i (W R
j ) in the

Roe flux function associated with node i (j), which itself is an approximate Riemann solver, gives the
sought-after accuracy and robustness effects.

5.2. Some implementational details

For the purpose of solving the Riemann problem (35), the intersection of the instantaneous position of
the material interface and the dual CFD grid is assumed to coincide with the intersection of the boundaries
of the control volumes and the edges of the original CFD grid (see Fig. 2). This facilitates the computation
of the interfacial fluxes but raises the issue of which normal to use in this computation: that to the material
interface or that to the corresponding face of the control volume, since both are available but are different
except for one-dimensional problems. In order to remain consistent with the principles of the finite volume
method, the normal to the face of the control volume, nij, is always chosen here for computing a flux Uij. How-
ever, it will be shown in Section 5.4 that in order to ensure that the GFMP–ERS is contact preserving, the
input and output entities of the Riemann solver (see Fig. 2) must be computed using the normal to the material
interface. This normal between two connected grid points i and j on both sides of the material interface can be
evaluated using the gradient of the level-set function as follows:
mij ¼ r/ij �
1

2
ðr/i þr/jÞ; ð38Þ
where r/k, k ¼ i; j is the nodal gradient and can by computed by a least square technique such as that de-
scribed in [24].

5.3. The GFMP–ERS multi-fluid method

Let the subscripts I, L, and R denote the material interface and the media at its left and right sides, respec-
tively, nij denote the normal to the control volume at the face between nodes i and j, and mij denote the normal
to the material interface at the same point (see Fig. 2).

First, the case of the simple forward Euler time-integrator is considered. In this case, the proposed GFMP-
ERS multi-fluid method can be summarized as follows.

(1) Capture the material interface by checking the product of the values of the level-set function / at vertices
i and j of edge i� j. A positive value indicates that edge i� j does not cross the material interface, in
which case the numerical flux function is computed as usual. On the other hand, a negative value indi-
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cates that this edge crosses the material interface, in which case two different fluxes are computed after a
local, one-dimensional, two-phase Riemann problem along this edge is solved exactly. In algorithmic
words, this can be written as follows:
If /n
i � /n

j > 0;

Uij ¼ Roe W n
i ;W

n
j ; ðEOSi ¼ EOSjÞ; nij

� �
;

If /n
i � /n

j 6 0;

– extract the density qn
k ; the velocity vector un

k ; and the pressure pn
k ; from W n

k ; k ¼ i; j

– decompose each of the velocity vectors un
k ; k ¼ i; j; into a normal component un

mijk
and

a tangential component un
k � un

mijk
mij where mij ¼

r/ij

jr/ij j
is computed using Eq: ð38Þ

– solve exactly the two-phase Riemann problem ð35Þ along the edge i� j using qn
k ; un

mijk
; and

pn
k ; k ¼ i; j as inputs and compute qn

IL
;qn

IR
; un

I and pn
I where qIL

; qIR
; uI ; and pI have

the same meaning as in Fig:2

– reconstruct the velocity vectors at both nodes i and j as uRn

k ¼ un
k � un

mijk
mij þ un

I mij; k ¼ i; j

– construct W Rn

i and W Rn

j

– compute the two fluxes

Uij ¼ Roe W n
i ;W

Rn

i ;EOSi; nij

	 

Uji ¼ Roe W n

j ;W
Rn

j ;EOSj; nji

� �
ð39Þ
(2) Time-advance the solution of the multi-fluid problem to compute a temporary value eW nþ1
i of W nþ1

i
eW nþ1
i ¼ W n

i � Dt
X
j2jðiÞ

mesðoCijÞUijðW n
i ;W

n
j ; nijÞ ð40Þ
(3) Using the value of the level-set function at time tn, /n, unpack the conservative fluid state vector eW nþ1 –
that is, convert it to a vector V nþ1 of primitive variables to obtain ~qnþ1 and ~unþ1
eW nþ1!/
n

V nþ1 ! ð~qnþ1; ~unþ1Þ: ð41Þ

(4) Compute /nþ1 by time-advancing the solution of the level-set Eq. (23) using the forward Euler scheme

and the values of ~qnþ1 and ~unþ1 stored in V nþ1
ð/n; ~qnþ1; ~unþ1Þ ! /nþ1: ð42Þ

(5) For each node k
if /nþ1
k /n

k P 0; pack V nþ1
k using /nþ1

k : V nþ1
k !

/nþ1
k W nþ1

k ;

if /nþ1
k /n

k < 0; set W nþ1
k ¼ W Rn

k :
The reader can verify that the second substep within Step (5) above is not part of the original GFMP (for
example, see Step (5) in Section 3). In Section 5.4 below, it is shown that the main purpose of this feature
is to preserve the structure of the solution of the contact problem.

The extension of the GFMP–ERS summarized above to a higher-order, explicit or implicit, one-step time-
integrator is straightforward. Essentially, the desired one-step time-integrator is introduced in Step (2) out-
lined above and all other steps of this multi-fluid method are kept unchanged.
5.4. Contact preserving property

Consider a material front with the contact conditions un
L ¼ un

R ¼ u, pn
L ¼ pn

R ¼ p, but qn
L 6¼ qn

R, where the
subscripts L and R designate the left and right sides of the front. The nodes of the computational mesh
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can be divided in two groups: one where each node has as all its neighbors in the same fluid medium as
itself, and one where each node has at least one neighboring node that lies in a different fluid medium than
itself.

Consider a node i in the first group of nodes. Since all its neighbours are in the same fluid medium as itself,
it follows that
8j 2 jðiÞ W n
j ¼ W n

i :
Hence
F iðW nÞ ¼
X
j2jðiÞ

mesðoCijÞUijðW n
i ;W

n
i ; nijÞ:
Assuming that the flux function is consistent, it follows that
F iðW Þ ¼
X
j2jðiÞ

mesðoCijÞF ðW iÞ � nij ¼ F ðW iÞ �
X
j2jðiÞ

mesðoCijÞnij ¼ FðW iÞ �
Z

oCi

nds ¼ 0;
since the surface of a control volume is closed, and therefore
W nþ1
i ¼ W n

i ;
which implies that the state of contact is preserved.
Next, consider a node i in the second group of nodes described above, and consider a neighboring node j

that belongs to a different fluid medium than that of node i. During the solution of the two-phase
Riemann problem (35), the densities, normal velocities, and pressures at these nodes are input to the exact
Riemann solver. If the normal velocities are computed using the normal to the material interface, the exact
Riemann solver delivers the input itself as the solution. In this case, qn

IL
¼ qn

L, qn
IR
¼ qn

R, un
I ¼ u, and pn

I ¼ p.
Consequently, W Rn

i ¼ W n
i , W Rn

j ¼ W n
j

Uij ¼ RoeðW n
i ;W

n
i ;EOSi; nijÞ

Uji ¼ RoeðW n
j ;W

n
j ;EOSj; njiÞ
and therefore
F iðW Þ ¼
X
j2jðiÞ

mesðoCijÞUijðW i;W i; nijÞ ¼ 0
and
W nþ1
i ¼ W n

i

for the same reasons as in the previous case. This concludes the proof that as long as the input to the exact
Riemann solver is computed using the normal to the material interface – and not the normal to the control
volumes – the GFMP–ERS is a contact preserving multi-fluid method.

Finally, given that the material interface moves in time, a node i on one side of the material interface at time
tn can become on the other side of this interface at tnþ1. To preserve the structure of the solution of the contact
problem at tnþ1, W nþ1

i needs to be properly updated. This is done in Step (5) of the GFMP–ERS where W nþ1
i is

overwritten by W Rn

j ¼ W n
j in order to preserve the state of contact.

6. Extension to higher-order multi-step time-integrators

Extending the GFMP-ERS summarized in Section 5.3 to a higher-order, explicit or implicit, k-step time-
integrator requires paying special attention to Step (3) of this method (see Section 5.3) – that is, the unpacking
of the conservative fluid state vector eW nþ1. Straightforward extensions turned out to be numerically unstable.
On the other hand, the following is a proposed extension which achieved excellent results for a large number
of different multi-fluid problems benchmarked by the authors:
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(1) Capture the material interface and compute the numerical fluxes
If /n
i � /n

j > 0;

Uij ¼ Roe W n
i ;W

n
j ; ðEOSi ¼ EOSjÞ; nij

� �
If /n

i � /n
j 6 0;

– extract the density qn
k ; the velocity vector un

k ; and the pressure pn
k from W n

k ; k ¼ i; j
– decompose each of the velocity vectors un

k ; k ¼ i; j; into a normal component un
mijk

and

a tangential component un
k � un

mijk
mij where mij ¼

r/ij

jr/ij j

– solve exactly the two-phase Riemann problem ð35Þ along the edge i� j using qn
k ; u

n
mijk
;

and pn
k ; k ¼ i; j as inputs and compute qn

IL
; qn

IR
; un

I and pn
I where qIL

; qIR
; uI ; and pI

have the same meaning as in Fig:2

– reconstruct the velocity vectors at both nodes i and j as uRn

k ¼ un
k � un

mijk
mij þ un

I mij; k ¼ i; j

– construct W Rn

i and W Rn

j

– compute the two fluxes

Uij ¼ Roe W n
i ;W

Rn

i ;EOSi; nij

	 

Uji ¼ Roe W n

j ;W
Rn

j ;EOSj; nji

� �
ð43Þ
(2) Compute a temporary value eW nþ1
i of W nþ1

i by time-advancing the solution of the multi-fluid problem
using the chosen higher-order, k-step time-integrator
ðW n�kþ1; . . . ;W n�1;W nÞ ! eW nþ1 ðexplicit caseÞ; ð44Þ
ðW n�kþ1; . . . ;W n�1;W n;W nþ1Þ ! eW nþ1 ðimplicit caseÞ: ð45Þ
(3) Using the values of the level-set function /n�kþ2; . . . ;/n�1, and /n, unpack the conservative fluid state
vectors W n�kþ2; . . . ;W n�1;W n, and eW nþ1 as follows:
eW nþ1 !/
n

V nþ1!/
n

ð~qnþ1; ~unþ1Þ

W n !/
n

V n

W n�1 !/
n�1

V n�1

..

.

W n�kþ2 !/
n�kþ2

V n�kþ2:

ð46Þ
(4) Compute /nþ1 by time-advancing the solution of the level-set Eq. (23) using the chosen higher-order, k-
step time-integrator and the values of ~qnþ1 and ~unþ1 stored in V nþ1
ð/n�kþ1; . . . ;/n�1;/n; ~qnþ1; ~unþ1Þ ! /nþ1: ð47Þ

(5) Using the updated value of the level-set function /nþ1, pack appropriately all of V n�kþ2; . . . ; V n�1; V n, and

V nþ1
V nþ1 !/
nþ1

W nþ1

ðif /nþ1
k /n

k < 0; set W nþ1
k ¼ W Rn

k Þ

V n !/
nþ1

W n

V n�1 !/
nþ1

W n�1

..

.

n�kþ2 /nþ1
n�kþ2

ð48Þ
V ! W
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Note that at each time-station tnþ1, Step (5) of the above GFMP–ERS not only constructs the solution at tnþ1,
W nþ1, but also re-evaluates the solutions at the previous k time-stations.

7. Applications and performance assessments

First, a series of one-dimensional two-phase flow problems in a shock tube is considered to illustrate the
behavior and performance of the various methods discussed in this paper. More specifically, the shock tube
is assumed to have a unit length in the x direction. It contains two different fluids that are initially at rest
and separated by a thin membrane. At t ¼ 0, the two-phase flow is generated by the bursting of the membrane.
This flow is one-dimensional, but all reported calculations are performed on a three-dimensional unstructured
mesh with either 201 or 801 grid points along the x direction.

Next, the potential of the GFMP–ERS for the solution of realistic multi-fluid problems is demonstrated
with the three-dimensional simulation of the implosion of an air-filled and submerged glass sphere, and the
comparison of the obtained numerical results to experimental as well as other numerical simulation data.

Various single- and multi-step time-integrators are considered but in all cases, the governing Euler and
level-set equations are semi-discretized by the second-order FV scheme outlined in Section 2.4.

7.1. One-dimensional two-phase flow benchmark problems

7.1.1. Perfect gas – perfect gas computations

The purpose of this first example problem, which was also considered in [15], is to illustrate the extension of
the basic GFMP to a multi-step time-integrator. The two fluids are in this case perfect gases and the mem-
brane is positioned at x ¼ 0:5. The initial states of the gases at the left and right sides of the membrane
and the constants of their EOSs are
qL ¼ 1:0 uL ¼ 0 pL ¼ 1:0 cL ¼ 1:4 and qR ¼ 0:125 uR ¼ 0 pR ¼ 0:1 cR ¼ 1:2 ð49Þ
and therefore
qL

qR
¼ 8 ð50Þ
The spatial discretization is performed with 201 grid points along the length of the tube. Three computations
are performed: one using the GFMP with a fourth-order Runge–Kutta (RK4) time-integrator operating at
CFL = 0.8, and two using the GFMP with a three-point backward difference implicit (3PBDF) time-integra-
tor operating at CFL = 5.0 and CFL = 8.0, respectively. Fig. 3 which reports the numerical results at t ¼ 0:2
and compares them to the analytical solution shows that the GFMP equipped with the RK4 reproduces cor-
rectly the variations of the density, velocity, and pressure along the tube. The GFMP equipped with the
3PBDF implicit scheme is also reported to correctly reproduce the variations of these quantities, except for
the small bumps it introduces in the pressure and velocity at the shock. These bumps are not due to the GFMP
but to the second-order time-accurate 3PBDF operating at CFL = 8.0. At the lower CFL value of 5.0, the
bumps become even smaller. In any case, the computed solutions at the material interface are shown to be
in very good agreement with the analytical solution.

7.1.2. Perfect gas – perfect gas problem with a reflectionless shock

The shock tube problem considered here was also discussed in [14,17]. In this case, the membrane is posi-
tioned at x ¼ 0:2 and separates two perfect gases whose initial states and EOS constants are
qL ¼ 3:2 uL ¼ 9:43499279 pL ¼ 100:0 cL ¼ 5=3 and qR ¼ 1:0 uR ¼ 0 pR ¼ 1:0 cR ¼ 1:2:

ð51Þ

Hence
qL

qR
¼ 3:2: ð52Þ
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Fig. 3. Perfect gas – perfect gas: variations of the density, pressure, and velocity at t ¼ 0:2 along the length of the shock-tube (GFMP,
Dx ¼ 1=201).
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This problem is easier than the previous one from the density ratio viewpoint. However, it is more challenging
than the previous problem from the following viewpoint. The exact solution of this problem consists of a
shock wave and a contact discontinuity only that propagate to the right side of the material interface. On
the other hand, most if not all numerical methods applied to the solution of this problem can be expected
to generate a non-physical reflection at the material interface and therefore produce a solution containing also
a wave that propagates to the left of the material interface. This is because of so-called start-up errors – that is,
errors due to the unavoidable inexact representation of the initial conditions. In this sense, this problem allows
to evaluate the sensitivity of a computational method to imperfect initial data.

Two numerical computations are performed on the mesh with 201 grid points in the x direction: one using
the GFMP and one using the GFMP–ERS. In both cases, the RK4 time-integrator is chosen and the CFL
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number is set to 0.8. The results obtained at t ¼ 0:06 are reported in Fig. 4. Some small amplitude oscillations
can be observed in the computed solutions. They are due to the reflection at the material interface. As men-
tioned in [14], this spurious reflection is difficult to remove. The amplitude of the main oscillation exhibited in
the GFMP–ERS solution is shown to be twice as small as that exhibited by the GFMP solution. In any case,
the numerical solution delivered here by the GFMP–ERS appears to be more accurate than that reported in
[14] and comparable to that reported in [17].

7.1.3. Perfect gas – stiffened gas system with a density ratio of 20 and higher

Here, a series of shock tube problems is considered to illustrate the limits of the GFM and GFMP for
multi-fluid problems with a strong interfacial contact discontinuity, and highlight the superior performance
of the GFMP–ERS for such problems.

The first shock tube problem discussed herein was also considered in [15]. In this problem, the membrane is
positioned at x ¼ 0:3. The fluid at the left side of this membrane is a perfect gas. The fluid at the right side of
the membrane is water and is modeled as a stiffened gas. The initial states of both fluids and the constants of
their EOSs are
Fig. 4.
ERS, D
qL ¼ 50:0 uL ¼ 0 pL ¼ 105 cL ¼ 1:4

and

qR ¼ 1000:0 uR ¼ 0 pR ¼ 109 cR ¼ 4:4 pR ¼ 6:0� 108

ð53Þ
and therefore
qL

qR

¼ 20: ð54Þ
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Two meshes are generated: one with 201 grid points along the x direction, and one with 801 grid points along
this direction.

On each mesh, two computations are performed: the first one using the GFMP and the second one using
the GFMP–ERS. In both cases, the time-discretization is performed using the RK4 time-integrator and the
CFL number is set to 0.8. The results at t ¼ 2:4� 10�4 are reported in Fig. 5 (Dx ¼ 1=201) and Fig. 6
(Dx ¼ 1=801). On the mesh with 801 grid points in the x direction, both of the GFMP and GFMP–ERS per-
form well. However, the GFMP–ERS predicts a sharper density jump close to the material interface. On the
coarser mesh with 201 grid points in the x direction, only the GFMP–ERS captures the density plateau
between the shock and the contact surface. This underscores the superior performance of the GFMP–ERS
for such problems.

Next, variants of the above problem with an increasingly higher density ratio are considered by decreasing
the initial value of the density of the perfect gas. All other parameters of the above shock tube problem are
kept unchanged. The GFM, GFMP, and GFMP–ERS are applied to the solution of these problems on both
generated meshes in the time-interval ½0; 1:2� 10�4�. For this purpose, all three methods are equipped with the
RK4 time-integrator. However, the GFM and GFMP are equipped in this case with the Lax–Friedrichs flux
scheme characterized by the positivity property [16], whereas the standard Roe flux is used in the GFMP–ERS
computations. The outcomes of the performed simulations are characterized in Table 1 below where ‘‘suc-
ceeds” means that the simulation terminates successfully and produces the correct results, and ‘‘fails” means
that the computations fail during the simulation – typically, early on and because of encountered negative
pressure values.
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Fig. 5. Perfect gas – stiffened gas: variations of the density, pressure, and velocity at t ¼ 2:4� 10�4 along the length of the shock-tube
(Dx ¼ 1=201) – zoom on the ‘‘plateau” region is shown for the density field at the top right part of the figure.
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Fig. 6. Perfect gas – stiffened gas: variations of the density, pressure, and velocity at t ¼ 2:4� 10�4 along the length of the shock-tube
(Dx ¼ 1=801) – zoom on the ‘‘plateau” region is shown for the density field at the top right part of the figure.

Table 1
Perfect gas – stiffened gas: limits of the GFM and GFMP and advantage of the GFMP–ERS for problems with a strong interfacial contact
discontinuity

Density ratio GFM GFMP GFMP-ERS
Lax–Friedrichs flux Lax–Friedrichs flux Roe flux
CFL = 0.1 CFL = 0.1 CFL = 0.8

1000/50 = 20 Succeeds Succeeds Succeeds
1000/40 = 25 Fails (negative pressure,

Dx ¼ 1=201 and Dx ¼ 1=801)
Succeeds Succeeds

1000/10 = 100 Fails (negative pressure,
Dx ¼ 1=201 and Dx ¼ 1=801)

Succeeds Succeeds

1000/5 = 200 Fails (negative pressure,
Dx ¼ 1=201 and Dx ¼ 1=801)

Fails (negative pressure,
Dx ¼ 1=201 and Dx ¼ 1=801)

Succeeds
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The reader can observe that despite using a flux with the positivity property, the GFM fails to solve all
instances of the considered problem with a density ratio higher or equal to 25, even when the CFL number
is set as low as 0.1. The GFMP equipped with the same flux scheme also fails as soon as the density ratio
exceeds the value of 200, even when the CFL number is reduced to 0.1. On the other hand, the GFMP–
ERS equipped with the standard Roe flux successfully solves all considered instances of the problem on both
coarse and fine grids. This highlights the limits of the GFM and GFMP for problems with a strong interfacial
contact discontinuity, even when equipped with a flux scheme with the positivity property, and the robustness
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of the GFMP–ERS for such problems. It also supports the explanation that for multi-fluid problems with a
large discontinuity of the density at the material interface, using a flux scheme with the positivity property
does not seem to be as crucial as using an appropriate discretization scheme that does not cross the material
interface.

7.1.4. Gas – water system with a density ratio of 1000

Here, a stiffer model problem with two differents EOSs for modeling gas and water is considered. The mem-
brane is positioned at x ¼ 0:3. The initial conditions for both fluid media are more relevant than previously to
underwater implosions where the ratio of densities at the material interface is approximately 1000 as they are
set to
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Fig. 7.
length
qL ¼ 1:0 uL ¼ 0 pL ¼ 105 and qR ¼ 1000:0 uR ¼ 0 pR ¼ 107 ð55Þ

and therefore
qL

qR
¼ 1000: ð56Þ
Two computations are performed on the mesh with 201 points in the x direction. In the first one, the water is
modeled by Tait’s EOS with k1 ¼ 2:07� 109, k2 ¼ 7:15, p0 ¼ pR and q0 ¼ qR. In the second one, the water is
modeled by the stiffened gas EOS with c ¼ 7:15 and p ¼ k1

k2
¼ 2:07�109

7:15
In both cases, the air is modeled by the

perfect gas EOS with c ¼ 1:4.
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Air (perfect gas) – water (barotropic fluid/stiffened gas): variations of the density, pressure, and velocity at t ¼ 4:0� 10�4 along the
of the shock-tube (GFMP–ERS, Dx ¼ 1=201).
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For this problem, the GFM and the GFMP fail early on in the simulation because of the presence of a
strong contact discontinuity. On the other hand, the GFMP–ERS equipped with the RK4 time-integrator
operating at CFL = 0.8 delivers in both cases excellent results, as shown in Fig. 7 for t ¼ 4� 10�4.

Note that the analytical solution of the above problem is the same whether the water is modeled as a baro-
tropic fluid or as a stiffened gas. The structure of this solution consists of a shock wave travelling in the air, a
contact discontinuity, and a rarefaction wave propagating in the water. This is consistent with both the physics
of the problem and the chosen models. Indeed, as shown in Remark 3 (see Section 2.2.2), a stiffened gas
behaves during an isentropic transformation like a barotropic fluid modeled by Tait’s EOS.

7.2. Underwater implosion

The GFMP–ERS was implemented in the AERO-F flow code [25,26]. Here, it is applied to the three-dimen-
sional simulation of the implosion of an air-filled and submerged glass sphere. The parameters of this simu-
lation correspond to the experiments and test data recently reported in [27].

In the experimental setup described in [27], an air-filled glass sphere was submerged in a pressure vessel
filled with water. The implosion of the glass sphere was initiated either by a critical hydrostatic pressure, or
by the actuation of a piston at the bottom of the sphere. The test stand consisted of an aluminium base plate
and a 7.62 cm diameter pipe standing vertically. A glass sphere with an outer radius of 3.81 cm was placed on
top of the pipe. Four implosion experiments were performed with an initial hydrostatic pressure of 6.996 MPa,
and an initial pressure inside the glass sphere of 101.3 kPa. Three dynamic pressure sensors were installed at
10.16 cm from the center of the sphere, at the same height, and in three directions 120� apart. For these four
experiments, the recorded pressure time-histories (see Fig. 9) reveal pressure drops of 1.6 MPa and pressure
peaks ranging between 25.8 and 27.2 MPa (variations of the order of 5%). A secondary peak can also be
observed in Fig. 9; however, its amplitude and position in time have a greater variability than the pressure
drop and primary peak.

Using the two-dimensional axisymmetric computational domain shown in Fig. 8, various numerical simu-
lations were also performed by the author of [27] using the DYSMAS code [29]. In these simulations, both
Fig. 8. Schematic of the implosion experiment reported in [27] and corresponding computational domain (dashed lines represent the non-
reflecting boundaries of the two-dimensional computational domain adopted in [27]).
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fluid media were assumed to be inviscid. Water was modeled by Tillotson’s EOS and air by the perfect gas
EOS. The initial conditions were set to
Fig
qw ¼ 1000:0 kg=m3; uw ¼ 0 m=s; pw ¼ 6:996 MPa;

qa ¼ 1:3 kg=m3; ua ¼ 0 m=s; pa ¼ 101:3 kPa;
where the subscripts w and a designate water and air, respectively. An element deletion technique for prescrib-
ing the removal of the glass material was also applied at various speeds. However, only the case where the
glass was assumed to have disappeared at t ¼ 0 (infinite element deletion speed) is reported here (for the sake
of comparison with this paper’s results where no such technique was used). In general, DYSMAS predicted a
pressure drop of almost 3.0 MPa and a primary pressure peak of 38.4 MPa at the sensor locations. It also pre-
dicted a secondary pressure peak and a pressure dip after both pressure peaks of approximately 4.5 MPa (see
Fig. 10).

As mentioned at the beginning of this section, the AERO-F code equipped with the proposed GFMP–ERS
is also applied here to the simulation of the implosion experiment described above. Because the main purpose
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of this simulation is the verification of a three-dimensional code, a three-dimensional computational domain
covering a 20-degree slice of the cylindrical pressure vessel is chosen for this purpose. All other dimensions of
this computational domain and corresponding non-reflecting boundaries are chosen to be the same as those
used in [27]. This domain is discretized by a grid with 794,254 nodes, 4,484,412 tetrahedra, and a mesh density
similar to that used for the numerical simulations reported in [27]. Symmetry boundary conditions are applied
on the lateral boundaries of this computational domain. The water is modeled by the stiffened gas EOS with
c ¼ 7:15 and P1 ¼ 2:89� 108 Pa. The air is modeled by the perfect gas EOS with c ¼ 1:4. Both media are also
assumed to be inviscid. The following initial conditions, which are consistent with those of the experiments
reported in [27], are adopted. At t ¼ 0, the air is assumed to occupy the same volume as the sphere of glass
before it breaks, and to be still at a uniform pressure of 101.3 kPa and a uniform density of 1:3 kg=m3.
The initial hydrostatic pressure of the water surrounding this air bubble is assumed to be equal to
6.996 MPa at the depth of the center of the air bubble; its initial density is set to 1000:0 kg=m3 all over the
computational domain. The AERO-F simulation is performed using a second-order space-accurate
GFMP–ERS and the second-order Runge–Kutta time-integrator. The CFL number is fixed to 0.5 and the
computation is performed until reaching the physical time of 0.6495 ms.
Fig. 11. Density contourplots (in kg/m3) predicted by AERO-F equipped with the GFMP–ERS in the vicinity of the air bubble during its
collapse.
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Fig. 10 reports the pressure time-history predicted by AERO-F (equipped with the GFMP–ERS) and com-
pares it to: (a) that predicted by the DYSMAS code, and (b) those recorded during experiment 3 and exper-
iment 4. The focus on the results of these two experiments is only because they ‘‘envelop” the results of the
other two experiments, and reporting only these keeps Fig. 10 readable. (Note that as done in [27], time
was shifted in this figure so that the pressure peak is reached at t ¼ 0:8 ms). The GFMP–ERS is shown to
reproduce the recorded pressure signal fairly accurately. A first pressure drop of almost 3 MPa is predicted
at t ¼ 0:354 ms, slightly later than that predicted by DYSMAS (t ¼ 0:350 ms). The primary pressure peak pre-
dicted by AERO-F is 29.0 MPa: it is closer to the measured pressure peak value (25.8–27.2 MPa) than that
predicted by DYSMAS (38.4 MPa). On the other hand, the secondary peak predicted by AERO-F is flattened.
The lowest pressure level predicted by AERO-F (4.5 MPa) is comparable to that predicted by DYSMAS.
After this lowest pressure level is reached, both codes correctly predict similar rises to the initial pressure level.

Finally, it is noted that the implosion experiment described herein cannot be simulated by a one-dimen-
sional spherical model. Indeed, Fig. 11 which displays the contourplots of the density field computed by
AERO-F at t ¼ 0:87 ms reveals that after some point during its collapse, the bubble is no longer spherical
(until after its rebound).
8. Conclusions

The ghost fluid method for the poor (GFMP) was developed for the solution of two-phase flow problems
using the stiffened gas equation of state and one-step time-discretization algorithms. It is a nearly conservative
and computationally efficient method. However, it cannot handle problems with strong contact discontinu-
ities, particularly at practical mesh resolutions. As such, it is not applicable to the solution of two-phase
air/water applications such as underwater implosions. In this paper, the GFMP was generalized to arbitrary
equations of state and multi-fluid problems with multiple equations of state. It was also extended to higher-
order multi-step time-integrators. Most importantly, the GFMP was also equipped with an exact, local, one-
dimensional, two-phase Riemann solver for computing the fluxes at the material interface without crossing it,
in order to make this method robust with respect to a large discontinuity of the density and a strong pressure
jump at the material interface. Consequently, the resulting multi-fluid method was labeled the GFMP–ERS
(for GFMP with Exact Riemann Solver). Like the original GFMP, the GFMP–ERS is computationally effi-
cient, contact preserving, and nearly conservative. Its application in this paper to the solution of various shock
tube problems with stiffened gas and barotropic equations of state has revealed a superior performance in the
presence of large density and pressure jumps. Also, its successful application to the simulation of the implosion
of an air-filled and submerged glass sphere for which experimental data is available has highlighted its poten-
tial for the analysis of underwater implosion problems.
Appendix A. One-dimensional two-phase Riemann problems

At each time-step, the one-dimensional two-phase Riemann problem (35) is constructed along each edge
i� j that crosses the material interface which is designated here by the subscript I. This problem can be reduced
to an explicit expression of the normal velocity at the material interface, uI , as a function of the pressure at this
material interface, pI , and a non-linear equation in pI . For example, when both media on the left and right sides
of the material interface are modeled as stiffened gases, the local Riemann problem can be written as
uI ¼
1

2
ðuL þ uRÞ þ

1

2
RRðpI ; pR; qRÞ �RLðpI ; pL; qLÞð Þ

RðpI ; uL; pL; qL; uR; pR; qRÞ ¼ RLðpI ; pL; qLÞ þRRðpI ; pR; qRÞ þ uR � uL ¼ 0
ðA:1Þ
where the subscripts L and R designate the left and right sides of the material interface, respectively, RL and
RR are two vector functions that depend on the structure of the wave solution at the left and right sides of the
contact discontinuity (see Fig. 2), and a ‘‘;” is used to separate the unknown variables from known quantities.

When both media on the left and right sides of the material interface are modeled by Tait’s EOS, the Rie-
mann problem can be written as
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uI ¼
1

2
ðuL þ uRÞ þ

1

2
R�RðpI ; qRÞ �R�LðpI ; qLÞ
	 


;

R�ðpI ; uL; qL; uR; qRÞ ¼ R�LðpI ; qLÞ þR�RðpI ; qRÞ þ uR � uL ¼ 0;
ðA:2Þ
where R�L and R�R are two vector functions that depend on the structure of the wave solution at the left and
right sides of the contact discontinuity (see Fig. 2). Analytical expressions for RL, RR, R�L, and R�R can be ob-
tained from the Rankine–Hugoniot jump conditions for shocks and the isentropic relations for rarefactions
[23]. For the sake of completeness, these are given in Sections A.1,A.2,A.3,A.4 of this appendix. Once Eq.
(A.1) is solved for pI – for example, using Newton’s method – the computation of other interface quantities
such as uI , qIL

and qIR
becomes straightforward.

A.1. Shock wave relations for a stiffened gas

The shock wave relations for a stiffened gas can be written in terms of the unknown value of the pressure at
the material interface, pI , as follows
RKðpI ; pK ; qKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aK

�pI þ bK

r� �
ðpI � pKÞ; ðA:3Þ
where the subscript K designates either the medium at the left (L) or that at the right (R) of the material
interface,
aK ¼
2

ðcK þ 1ÞqK
bK ¼

cK � 1

cK þ 1

� �
�pK �pK ¼ pK þ pK ðA:4Þ
and cK and pK have been defined in Section 2.2.1 and correspond to the EOS on the K side of the interface as
indicated by the subscript.

The pressure derivative of RK at the material interface is given by
R0KðpI ; pK ; qKÞ ¼
dRK

dpI

¼ � aK

2ð�pI þ bKÞ2
: ðA:5Þ
A.2. Expansion wave relations for a stiffened gas

The expansion wave relations for a stiffened gas are given by
RKðpI ; pK ; qKÞ ¼
2cK

cK � 1

� �
�pI

�pK

� �cK�1
2cK

� 1

 !
ðA:6Þ
and
R0KðpI ; pK ; qKÞ ¼
cK

cK�p
cK�1
2cK

K

0@ 1A �pI

�pK

� �� cKþ1
2cK

� �
; ðA:7Þ
where cK denotes as before the speed of sound (see Eq. (10)) on the side K of the interface.

A.3. Shock wave relations for Tait’s EOS

For Tait’s EOS, the shock wave relations can be written as
R�KðpI ; qKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpI � pKÞðqI � qKÞ

qKqI

s
ðA:8Þ
and
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R�
0

K ðpI ; qKÞ ¼
dR�K
dpI

¼ 1

2R�K

� �
qI qI � qKð Þ þ pI � pKð ÞqKq0I

qKq2
I

� �
; ðA:9Þ
where
qI ¼
pI � gK

aK

� �b�1
K

q0I ¼
q1�bK

I

aKbK
pK ¼ gK þ aKqbK

K ðA:10Þ
aK and bK and gK have been defined in Section 2.2.2 and correspond to the EOS on the side K of the interface.

A.4. Expansion wave relations for Tait’s EOS

On the other hand, the expansion wave relations governing a medium modeled by Tait’s EOS are given by
R�KðpI ; qKÞ ¼
2cK

bK � 1

� �
�pI

�pK

� �bK�1
2bK

� 1

 !
ðA:11Þ
and
R�
0

K ðpI ; qKÞ ¼
cK

bK�pK

�pI

�pK

� ��bKþ1
2bK

: ðA:12Þ
A.5. Local solution by Newton’s method

The application of Newton’s method to the solution of the local non-linear Eq. (A.1) for the interface pres-
sure, pI , by Newton’s method generates the following sequence of iterate values of pI
pðmþ1Þ
I ¼ pðmÞI �

RðpðmÞI Þ
R0ðpðmÞI Þ

; ðA:13Þ
where m designates the Newton iteration. In this work, convergence of the sequence (A.13) is declared
when
2jpðmþ1Þ
I � pðmÞI j

pðmþ1Þ
I þ pðmÞI

< �; ðA:14Þ
where � is a specified tolerance.
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